

Corporate Profile

1&H Engineering Co., Ltd.

Minoru Tonegawa Managing Director

We will establish a solid leading position in the field of infrastructure development in Myanmar in collaboration with the Ministry of Construction and IHI Corporation, Japanese leading heavy industry manufacturer, as the production center for Precast Concrete Products, such as PC girder, PC Pile, Box Culvert, Building Component and others.

We are confident that we can manufacture our products with our strict quality control and supply our quality product to Myanmar market. As a result our products will support to improve the infrastructure in Myanmar. We also shall act as a main player of the development of roads and bridges in engineering and construction fields.

We would like to contribute to the economic development of Myanmar through our technology and realize the technical transfer to Myanmar.

Company Outline

I&H Engineering Co., Ltd. (I&H) is the joint venture between Ministry of Construction, the Republic of the Union of Myanmar and IHI Asia Pacific Pte. Ltd..

IHI Corporation Japan

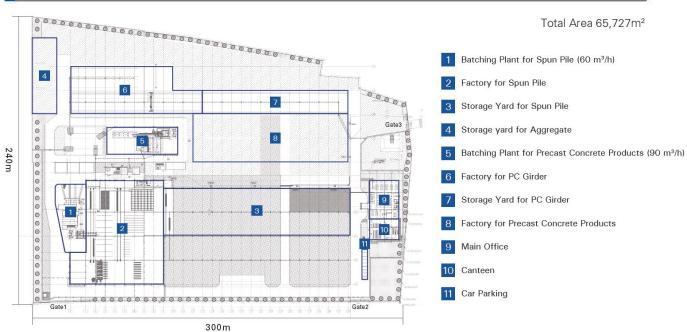
IHI Asia Pacific Pte. Ltd. Singapore Ministry of Construction Myanmar

Department of Highways Myanmar


I&H Engineering Co., Ltd.

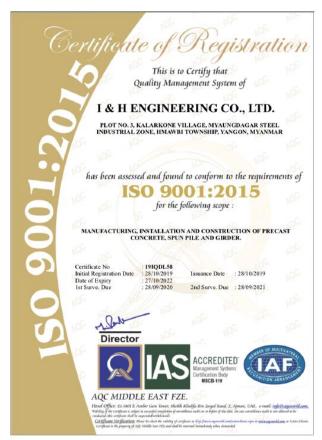
Company Profile

Establishment	February, 2016				
Capital Stock	USD 12,238,500				
Share Holders	IHI Asia Pacific Pte. Ltd. 60%				
	Department of Highways 40%				
Managing Director	Mr. Minoru Tonegawa				
Address	Plot No.3, Kalakone Village,				
	Myaungdagar Steel Industrial Zone,				
	Hmawbi Township, Yangon Region,				
	The Republic of the Union of Myanmar				
Business Scope	i) PC Spun Pile (JIS A 5335 and JIS A 5373 Equivalent, Class A, B, C)				
•	ii) PC Bridge Girder				
	iii) Pre-cast and Pre-tensioned Bridge Slab				
	iv) Building Components				
	v) Box Culvert				
	vi) Other Pre-cast Concrete Product				

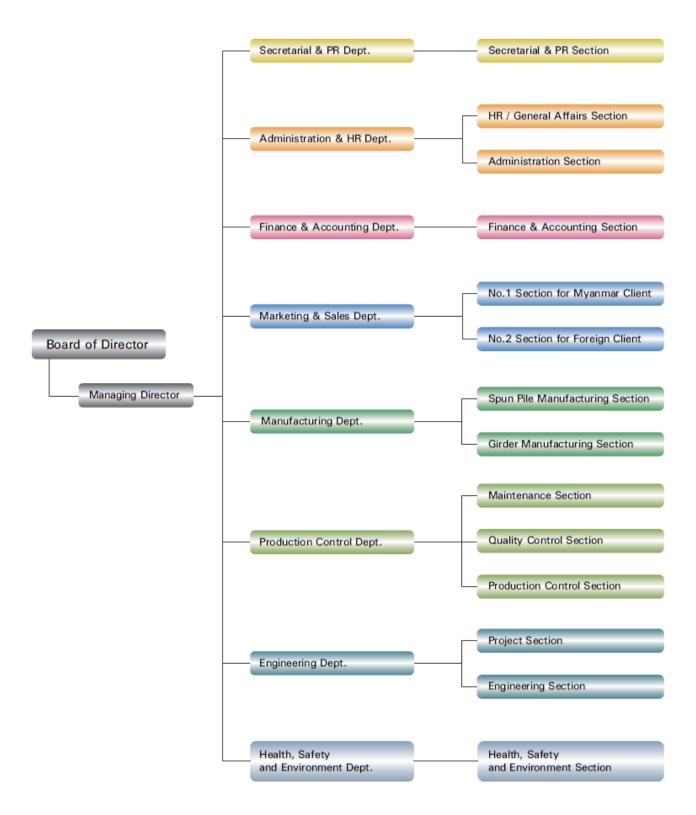

Factory Location & Layout

Factory Location

If you enter I&H into Google-Maps, the location of our company will be displayed.


Factory Layout

Certification


Certificate of Incorporation and Registration

Certificate of ISO 9001:2015

Factory Location & Layout

Organaization

Product Lineup

PC Spun Pile

Advantage of PC Spun Pile

- Save the construction expense
- Minimize the construction period
- High concrete strength, high bearing capacity and high bending capacity
- High quality can be maintained by manufacturing in the factory
- Easy to control the pile quality
- Less Noise, less vibration and no excavated soil, environmentally friendly
- No interruption due to rain

Drawing Sample (D600, Class-A)

Product Lineup

Specification of Spun Pile

No.			Dimension			PC-bar Dia. (mm)	No.of	Effective	Crack	Break	Allowable Bearing Capacity	
	Dia. (mm)	Thick- ness (mm)	Length (m)	Weight (ton/m)	Class		PC Bar (Nos)	Pre-stress (N/mm2)	Bending Moment (kN.m)	Bending Moment (kN.m)	Per- manent (kN)	Tem- porary (kN)
PHC S	pun Pile (0	369-000-0000	trength : Cyli	inder 80 N/	mm2)					<u> </u>	(KIN)	(KIN)
	,		,		Α	7.1	6	4.2	27.7	42.0	1,173	1,760
1	300	60	5~13	0.118	В	10.0	6	8.1	37.8	72.3	1,141	1,711
			0 13		С	10.0	8	10.3	43.8	89.9	1,124	1,686
			5~15	0.151	Α	7.1	7	4.0	41.8	58.7	1,510	2,265
2	350	65			В	10.0	7	7.4	55.4	102.5	1,475	2,212
					С	10.0	9	9.2	62.9	124.6	1,457	2,185
			5~15	0.199	A	7.1	10	4.3	64.4	94.7	1,983	2,974
3	400	75			В	10.0	10	8.0	86.7	164.0	1,932	2,898
_					С	10.0	11	8.7	91.0	176.7	1,923	2,884
4	450	80	5~15	0.242	A B	9.0	7 14	4.0	87.2	121.5	2,413	3,619
4	450	80		0.242	С	10.0 10.0	14	9.0	124.7 129.4	253.0 253.8	2,351 2,331	3,526 3,496
_		\vdash		+	A	9.0	9	4.1	121.4	172.6	3,006	4,509
5	500	90	5~15	0.301	В	9.0	18	7.8	164.0	306.0	2,929	4,393
-	330	35			С	10.0	18	9.3	182.0	358.9	2,898	4,348
					Α	9.0	12	4.1	202.4	279.8	4,071	6,107
6	600	100	5~15	0.408	В	9.0	24	7.7	271.8	500.7	3,971	5,956
			ASS 12 FOX3.		C	10.0	24	9.1	300.1	587.9	3,935	5,902
PHC S	pun Pile (0	Concrete s	trength : Cub	e 80 N/mm	12)			722		3.55		
			5~13	0.118	Α	7.1	6	4.4	24.6	40.2	938	1,407
1	300	60			В	9.0	8	8.7	35.7	72.0	897	1,346
					С	10.0	8	10.3	40.1	82.8	882	1,323
		65	65 5~15	.5 0.151	Α	7.1	7	4.0	36.4	56.6	1,212	1,818
2	350				В	10.0	7	7.4	49.8	96.6	1,170	1,755
_					С	10.7	9	10.3	61.9	127.6	1,135	1,702
3 400	400	400 75 5~1	F. 46	5~15 0.199	A B	7.1 10.0	10 10	4.3 8.0	56.2 78.3	90.9 154.1	1,590 1,530	2,385 2,294
	400		o~15		С	10.7	11	9.7	88.9	181.9	1,503	2,254
_			5~15	0.242	A	9.0	7	4.0	75.8	117.2	1,936	2,905
4	450	80			В	10.0	14	8.4	113.0	236.6	1,858	2,787
75	0.200				С	10.7	14	10.1	127.3	260.8	1,817	2,726
		90	5~15 5~15	0.301 0.408	Α	9.0	9	4.1	105.7	166.3	2,412	3,618
5	500 600				В	9.0	18	7.8	147.9	288.1	2,320	3,480
					С	10.7	18	10.4	179.2	367.5	2,257	3,386
					Α	9.0	12	4.1	176.2	270.5	3,267	4,900
6		100			В	10.0	24	8.4	260.3	548.3	3,141	4,712
	811 (2		1 2 1	50.11/	C	10.7	24	10.2	295.4	604.5	3,067	4,600
C Sp	un Pile (Co	ncrete str	ength : Cylin	aer 50 N/m			-	100000		1	70.	A
100	2000	20		0.00	A	7.1	6	4.4	24.6	40.2	706	1,059
1	300	60	5~13	0.118	В	9.0	8	8.7	35.7	72.0	658	987
					C A	10.0 7.1	7	10.3 4.0	40.1 36.4	82.8 56.6	640 914	960 1,371
3 400	350) 65	65 5~15 75 5~15	0.151 0.199	В	10.0	7	7.4	49.8	96.6	865	1,298
	330				C	10.7	9	10.3	61.9	127.6	824	1,236
					A	7.1	10	4.3	56.2	90.9	1,197	1,795
	400	75			В	10.0	10	8.0	78.3	154.1	1,127	1,691
	acceller.	1014725E			С	10.7	11	9.7	88.9	181.9	1,095	1,643
\neg	450	80	5~15	0.242	Α	9.0	7	4.0	75.8	117.2	1,460	2,190
4					В	10.0	14	8.4	113.0	236.6	1,366	2,049
					С	10.7	14	10.1	127.3	260.8	1,321	1,981
	500	90	5 ∼15	0.301	Α	9.0	9	4.1	105.7	166.3	1,818	2,727
5					В	9.0	18	7.8	147.9	288.1	1,712	2,568
					C	10.7	18	10.4	179.2	367.5	1,637	2,456
-	222	100	120	g 6990	A	9.0	12	4.1	176.2	270.5	2,462	3,693
6	600	100	5~15	0.408	В	10.0	24	8.4	260.3	548.3	2,309	3,463

Ф300-ф450: Factory, Warehouse, Building, Airport, Retaining Wall

Ф500-ф600: Bridge, Power Plant, Petrochemical, LNG Plant, Shopping Mall, Piled Slabs

^{*}Bending Strength at application of axial-tension N=0kN*Allowance bearing capacity includes safety factor for breaking capacity as 3 for permanent and 2 for temporary.
*Note: For type-C, please order in advance 2 months.

Quality Control for Spun Pile

Cylinder Compression Test for Checking Strength of Concrete

PC Steel Bar Tensile Test for Checking Material Tensile Strength

 $\label{lem:decomposition} \mbox{Dimension Inspection for Length, Thickness and Diameter.}$

Product Lineup

PC Bridge Girder

- Advantage of Pre-cast and Post tensioned Segmental Bridge Girder
 - High quality can be maintained by manufacturing in the factory
 - Minimize the temporary yard at the project site
 - Minimize the work period at the project site
 - Minimize the supervising engineer at the project site
 - No interruption due to the rain
 - Easy to transport the segmental girder to the erection point

Post-tensioned Segmental I Girder

Post-tensioned Box Girder

Post-tensioned Segmental T Girder

Pre-tensioned Hollow Girder

PC Bridge Panel & Slab

Advantage of Pre-Cast and Pre-tensioned Bridge Panel & Slab

- High quality can be maintained by manufacturing in the factory
- Easy installation on the girder without scaffolding
- Minimize the work period at the project site

Mold for PC Bridge Panel

Production of PC Bridge Panel

Installation of PC Bridge Panel

View of installed PC Bridge Panel

Box Culvert

Advantage of Pre-Cast Concrete Box Culvert

- High quality can be maintained by manufacturing in the factory
- No concrete work at project site
- Minimize the work period at the project site
- · Minimize the supervising engineer at the project site
- No interruption due to rain

U Type Culvert

Top Lid for U Type Culvert

Boxculvert

Building Components and Other Pre-Cast Concrete Products

Advantage of Pre-Cast and Pre-tensioned Bridge Panel & Slab

- High quality can be maintained by manufacturing in the factory
- · Minimize the work period at the project site
- No interruption due to rain

Precast Concrete Segment

Building Components

Factory Main Equipment - Casting

Form works (Φ300-600)

Cutting and Heading machine

Tension Jack

Spinning Machine

Auto-Cage Forming Machine

Vacuum Lift

Factory Main Equipment - Utility

Boiler

Overhead Crane

Concrete Batching Plant (2 nos.)

Suspension Crane

PC Girder Production

PC Panel Production

Spun Pile Process

Spun Pile Production Process

Material delivery

Cutting and heading of PC Bar

Caging

Anchoring

Casting Concrete

Tensioning

Spinning

Steam Curing

Unmolding

Curing

Storage

Shipment

Spun Pile Installation Process

Surveying and marking of piling center

Mobilization of pile machinery

Storage of delivered pile

Marking of length point on pile

Slotting of pile into pile machine

Checking the Alignment

Installation of Jack-in-pile

Welding of pile joint

Cutting of pile if it stopped higher elevation

Girder Process

Girder Production Process

Preparation of Formwork

Assembly of Rebar

Setting of PC Duct

Casting of Concrete

Demolding of Formwork

Storage of Girder

Formwork & Tensioning PC Wire for PC Panel

Casting of Concrete for PC Panel

Storage of PC Panel

Girder Installation Process

Transportation by Trailer

Transportation by Barge

Setting of Assembly Base

Unloading of Segment Block

Setting of Segment Block

Tensioning

Erection of Girder

Completion of Erection of Girder

Setting of PC Panel

First Bridge Project Constructed in Cooperation with Ministry of Construction (New Myaung Mya Bridge)

Project Information

Project Owner	Ministry of Construction
Project Site	Myaung Mya District, Ayeyarwaddy Region, Myanma
Standard Specification	Japanese Industrial Standards (JIS)
Bridge Type	(Main) Steel Truss Bridge
	(Approach) 4 Post-tensioned Segmental I Girders
Bridge Length	(Total Length) 830m
	(Main) 290m
	(Approach) 540m

Myaung Mya Side Approach Bridge

Pathein Side Approach Bridge

We shall contribute to the development of Myanmar and shall develop the human resources through our technical transfer

(1) I&H Engineering Co., Ltd.

Address : Plot No.3 Kalakone Vilage, Myaungdagar Steel Industrial

Zone, Hmawbi Township, Yangon, Myanmar

TEL: (+95) 9 787095384 / (+95) 9 781016660

Email: IHE-marketing@ihi-g.com

URL: http://www.iandhengineering.com/

IHI Group Offices

Myanmar: IHI ASIA PACIFIC PTE. LTD. Yangon Branch

Unit 309, 3rd Floor, Prime Hill Business Square, No.60, Shwe Dagon Pagoda Road,

Dagon Township, Yangon, Myanmar

TEL: (+95) 1 395526 FAX: (+95) 1 395526

Japan: IHI Corporation

Toyosu IHI Building, 1-1, Toyosu 3-chome, Koto-ku, Tokyo 135-8710 Japan

TEL: (+81) 3 6204 7460 FAX: (+81) 3 6204 8715